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ABSTRACT

This note develops an alternative definition of the "delta scale" of item

difficulty that is used at ETS. A comparison is given with the traditional

definition of the delta scale that is based on the normal distribution. Some

advantages of the alternative scale are mentioned.
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I. THE STANDARD DEFINITION OF AN TTEK'S "DELTA"

Suppose p denotes the proportion of examinees in a given population of

examinees who answer a particular item correctly. The value, p, is a population

parameter that measures the easiness of the item, i.e., higher values of p

denote easier items. At ETS, the difficulty of an item is measured by a trans-

formation of p to the "delta scale." The transformation of p into A is given by

the equation

A(p) = 13 - 42p

where 2 is the Lsual "z-veue" that corresponds to p. That is, the probability

that a normal deviate is smaller than is p. A(p) may also be expressed as
'P

A(p) = 13 - 44-1(p) (1)

where 4-1(p) denote' the inverse function of the normal cummulative discribution

function, i.e.,

x
1

1(x) = f
1

e
- 2u 2

du.
/N

(2)

The value of A(p) is a population measure of the difficulty of an item

because higher values of A(p) denote more difficult items. The location and

scale values of 13 and 4 in (1) are arbitrary, but they ensure that typical

delta values range from about 5 to about 21. This avoids negative values and

may have other practical advantages.

The use of the inverse normal transformation 4-1(p) in (1) is based on

"normal ogive" types of models for item responses that were developed years ago.

However, no use of this fact is made in typical uses of "item deltas." We

regard the use of 4-1(p) as simply one way to stretch out the probability scale

of p into a more useful set of units that are not seriously compressed near p=0
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or p=1. The alternative scale given in section 2 uses a different function to

alter the p-scale in a similar way.

Estimates of A(p) are used in practice. These are based on samples from

given populations of examinees. Let p denote a sample proportion of examinees

(out of n) who give the correct answer on the item in question. The sample

delta value is

A = A(P) (3)

where A(p) is the function defined in (1).

The standard error of A can be obtained using the 8-method (see Bishop,

Fienberg, and Holland, 1975). It is given by the asymptotic variance formula,

Var(A) = 42
p(1- 10

exp(0-1(p))2),

so that the standard error of A can be estimated by

(4)

/s.e.(A) = 4
p

exPW0-16))2)
27 (1 p)

(5)n

2. AN ALTERNATIVE DEFINITION OF A(p)

Lord and Novick (1968, page 399) report that the normal cumulative 0(x)

and a suitably scaled logistic cumulative differ by no more than .01 for all x.

For example, if

Y(x) = ex/(1+ex), (6)

then

I.(x) Y(1.7x)I 5 .01 all x.

Hence, we can approximate (x) by the scaled logistic Y(1.7x). This suggests

approximating 0-1(p) by

11 1,
15),.7 r (

(7)
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where

Y-1(p) = ln(A-3), (8)

and ln(u) denote the natural log of u. Hence, the formula for A(p) in (1) can

be approximated by

13 - ln(-2-).
1.47 1-p (9)

3

We may create an alternative definition of A(p) by using (9) a4 its defini-

tion rather than (1). Some reasons for doing this will be mentioned in section

4.

We wi.1 denote by AL(p) the logistic definition of the A-scale for p, i.e.,

AL(P) = 13

or

14 7 1-p
ln(-2-).

.

AL(p) = 13 - 2.35 ln(-4).

and we will denote the normal definition of by AN(p), i.e.

AN(P) = 13 40-1(p).

(10)

(12)

3. COMPARATIVE VALUES OF AN AND AL

The approximation of (x) by Y(1.7x) is quite good for all values of x.

However, when we go to the inverses of these two functions we have no guarantee

of a similarly good approximation. This needs to be examined directly. Table 1

and Figure I give values of AN(p) - AL(p) for values of p = .01, .02, ..., .99.

From this we see that for p between .09 and .91 the difference between AN and AL

never exceeds .11. As p approaches 0 and 1 the difference grows more rapidly.

The difference exceeds 0.50 for p2.97 or pd.03, and at p=.99 or p=.01 it is

1.51.
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In rough summary then, for .10<p.90 the difference between the standard

definition of the delta scale and one based on the logistic distribution is

negligible for practical purposes. For values of p in excess of .90 the

logistic definition of A always yields smaller values of A than does the normal

definition. For values of p smaller than .10 the logistic definition of A

always yield values for A that are greater than the normal definition. In many

practical situations (e.g., multiple choice tests) values of p less than .1 are

rarely encountered. In these situations the only real difference that one might

notice between the two definitions of 4 is that the logistic definition will

scale very easy items (i.e., 1)2.95) as easier (i.e., lower A values) than will

the normal definition of A.

4. WHY ANOTHER DEFINITION OF THE DELTA SCALE?

Our purpose is not to argue strongly for a change in the delta scale that

has been used for a long time at ETS and wirIch is familiar to those who need to

use it in test construction and analysis. Rather, we wish to show that if such

a change were made, it would have little effect on the values of the statistics

that are used but would have some Advantages that may prove useful. At the very

least, our analysis shows that useful results that apply to the logistic defini-

tion of the delta scale Tay be translated into results that almost hold for the

normal definition of this scale.

Possibly the most important advantage of the AL(p) over AN(p) is that AL(p)

involves "logits". The logit of p is log(p/(1-p)). This is a very well studied

quantity in the statistical (especially biostatistical) literature. For

example, it is known that a good estimator of AL(p) is not the obvious AL(p) but
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the smoother

DL 4 1

13 1.7 ilki4C+I" (13)

where p = X/n and X is the sample number correct (p is the sample proportion

correct). The estimator in (13) is unbiased tc order 0(n-2), unlike the more

obvious estimate, AL(i). The bias of AL(i) is 0(n-1) so that while AL(i) and

froo (13) both converge to the true population value AL(p) as n4+,, AL(p) does so

at a slower rate that does iL.

Formula (13) is derived from the Haldane-Anscombe estimator of the logit of

p -- see Bedrick (1984).

In addition, the standard error of DL can be Astimatc!d well using the for-

mule

s.e.(iL) =
4 X+.1 n-X+.1 .

1.7 Y (X+.3)2 (n-X+.3)2

(14)

The formula in (14) is derived from the work of Bedrick (1984) on estimators of

the standard deviation of the Haldane- Anscombo estimate of the logit of p.

Bedrick shows that the square of (14) provides an unbiased estimate of the

'ariance of 4, to order 0(n-3). Hence, (I3) and (14) provide a rather complete

package for estimating AL(p) that has good statistical properties, even in rela-

tively small samples. No such claim can be made for the corresponding formulas

(12) and (5) to estimate AN(p). They are only justified in large samples.

A second virtue of the logistic definition of A is that differences in item

deltas -- say, in a comparison of the performance of two subpopulations of

examinees on the same item -- can be interpeted in terms of odds-ratios of the

corresponding p values. For example, suppose pl is the proportion in group 1

who got the item c...rrect while p2 is the corresponding proportion in group 2.
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If we form the difference,

AL(Pi) AL(P2),

a bit of algebra reve-:s it to equal

pi p2
)- ln(147

17.717i 1_1,2

which, except for the factor -4/1.7, is the wog of the odds-ratio

r: / P2
1-P1 1-P2

(15)

(16)

The odds-ratio is also the cross-product ratio for the following 2x2 table,

Right Wzon Total

Group 1 P1 1-pi 1

Group 2 P2 1 -P2 1

i.e., the cross-product ratio is

P1(1-P2)

P2(1-P1)

(17)

(18)

6

The cross- product ratio and its natural log are widely regarded as useful,

margin-free, measures of associations in 2x2 tables. By margin-free we mean

that if the marginal distributions of the 2x2 table in (17) are modified by

multiplying each row and column by factors thenthe cross-product ratio is

unchanged. The margin-free nature of the cross-product ratio is quite important

for test development use of the A-scale since it insures that changes in the

overall correct answer rate of an item for a population will have a minimal

effect on the comparison of item deltas for subgroups within the population.

For example, differences in deltas found in one test administration will tend to

hold up in other test administrations. Hence, the use of AL(p) rather than

AN(p) briags the comparison of item difficulty indices into line with a well-
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establishPd statistical theory of dependence in 2x2 tables, e.g., Bishop,

Fienberg, and Holland (1975, chapter 11).
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FIGURE I. PLOT OF AN(p) AL(p) VERSUS p.
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TABLE 1. VALUES OF p and AN(p) - AL(p) for p=.01 (.01) .99

aN(P)-AL(P) P 41(0-400

.01 -1.51 .51 -.01

.02 -.94 .52 -.01

.03 -.66 .53 -.02

.04 -.48 .54 -.02

.05 -.35 .55 -.03

.06 -.26 .56 -.04

.07 ..18 .57 -.04

.08 -.13 .58 -.05

.09 -.08 .59 -.05

.10 -.04 .60 -.06

.11 -.01 .61 -.06

.12 .01 .62 -.07

.13 .03 .63 -.08

.14 .05 .64 -.08

.15 .06 .65 -.08

.16 .08 .66 -.09

.17 .09 .67 -.09

.18 .09 .68 -.10

.19 .10 .69 -.10

.20 .10 .70 -.10

.21 .11 .71 -.11

.22 .11 .72 -.11

.23 .11 .73 -.11

.24 .11 .74 -.11

.25 .11 .75 -.11

.26 .11 .76 -.11

.27 .11 .77 -.11

.28 .11 .78 -.11

.29 .11 .79 -.11

.30 .10 .80 -.10

.31 .10 .81 -.10

.32 .10 .82 -.09

.33 .09 .8, -.09

.34 .09 .84 -.08

.35 .08 .85 -.06

.36 .08 .86 -.05

.37 .08 .87 -.03

.38 .07 .88 -.01

.39 .06 .89 .01

.40 .06 .90 .04

.41 .05 .91 .08

.42 .05 .92 .13

.43 .04 .93 .18

.44 .04 .94 .26

.45 .03 .95 .35

.46 .02 .96 .48

.47 .02 .97 .66

.48 .01 .98 .94

.49 .01 .99 1.51

.50 .00
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